3.3 \(\int \sec ^4(c+d x) (A+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=65 \[ \frac{(5 A+4 C) \tan ^3(c+d x)}{15 d}+\frac{(5 A+4 C) \tan (c+d x)}{5 d}+\frac{C \tan (c+d x) \sec ^4(c+d x)}{5 d} \]

[Out]

((5*A + 4*C)*Tan[c + d*x])/(5*d) + (C*Sec[c + d*x]^4*Tan[c + d*x])/(5*d) + ((5*A + 4*C)*Tan[c + d*x]^3)/(15*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0439876, antiderivative size = 65, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {4046, 3767} \[ \frac{(5 A+4 C) \tan ^3(c+d x)}{15 d}+\frac{(5 A+4 C) \tan (c+d x)}{5 d}+\frac{C \tan (c+d x) \sec ^4(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4*(A + C*Sec[c + d*x]^2),x]

[Out]

((5*A + 4*C)*Tan[c + d*x])/(5*d) + (C*Sec[c + d*x]^4*Tan[c + d*x])/(5*d) + ((5*A + 4*C)*Tan[c + d*x]^3)/(15*d)

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps

\begin{align*} \int \sec ^4(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx &=\frac{C \sec ^4(c+d x) \tan (c+d x)}{5 d}+\frac{1}{5} (5 A+4 C) \int \sec ^4(c+d x) \, dx\\ &=\frac{C \sec ^4(c+d x) \tan (c+d x)}{5 d}-\frac{(5 A+4 C) \operatorname{Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{5 d}\\ &=\frac{(5 A+4 C) \tan (c+d x)}{5 d}+\frac{C \sec ^4(c+d x) \tan (c+d x)}{5 d}+\frac{(5 A+4 C) \tan ^3(c+d x)}{15 d}\\ \end{align*}

Mathematica [A]  time = 0.193881, size = 61, normalized size = 0.94 \[ \frac{A \left (\frac{1}{3} \tan ^3(c+d x)+\tan (c+d x)\right )}{d}+\frac{C \left (\frac{1}{5} \tan ^5(c+d x)+\frac{2}{3} \tan ^3(c+d x)+\tan (c+d x)\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4*(A + C*Sec[c + d*x]^2),x]

[Out]

(A*(Tan[c + d*x] + Tan[c + d*x]^3/3))/d + (C*(Tan[c + d*x] + (2*Tan[c + d*x]^3)/3 + Tan[c + d*x]^5/5))/d

________________________________________________________________________________________

Maple [A]  time = 0.032, size = 58, normalized size = 0.9 \begin{align*}{\frac{1}{d} \left ( -A \left ( -{\frac{2}{3}}-{\frac{ \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3}} \right ) \tan \left ( dx+c \right ) -C \left ( -{\frac{8}{15}}-{\frac{ \left ( \sec \left ( dx+c \right ) \right ) ^{4}}{5}}-{\frac{4\, \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{15}} \right ) \tan \left ( dx+c \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4*(A+C*sec(d*x+c)^2),x)

[Out]

1/d*(-A*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)-C*(-8/15-1/5*sec(d*x+c)^4-4/15*sec(d*x+c)^2)*tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 0.927539, size = 58, normalized size = 0.89 \begin{align*} \frac{3 \, C \tan \left (d x + c\right )^{5} + 5 \,{\left (A + 2 \, C\right )} \tan \left (d x + c\right )^{3} + 15 \,{\left (A + C\right )} \tan \left (d x + c\right )}{15 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

1/15*(3*C*tan(d*x + c)^5 + 5*(A + 2*C)*tan(d*x + c)^3 + 15*(A + C)*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 0.468252, size = 140, normalized size = 2.15 \begin{align*} \frac{{\left (2 \,{\left (5 \, A + 4 \, C\right )} \cos \left (d x + c\right )^{4} +{\left (5 \, A + 4 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, C\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/15*(2*(5*A + 4*C)*cos(d*x + c)^4 + (5*A + 4*C)*cos(d*x + c)^2 + 3*C)*sin(d*x + c)/(d*cos(d*x + c)^5)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{4}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4*(A+C*sec(d*x+c)**2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)**4, x)

________________________________________________________________________________________

Giac [A]  time = 1.18374, size = 77, normalized size = 1.18 \begin{align*} \frac{3 \, C \tan \left (d x + c\right )^{5} + 5 \, A \tan \left (d x + c\right )^{3} + 10 \, C \tan \left (d x + c\right )^{3} + 15 \, A \tan \left (d x + c\right ) + 15 \, C \tan \left (d x + c\right )}{15 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

1/15*(3*C*tan(d*x + c)^5 + 5*A*tan(d*x + c)^3 + 10*C*tan(d*x + c)^3 + 15*A*tan(d*x + c) + 15*C*tan(d*x + c))/d